On the super edge-magic deficiency of some families related to ladder graphs

نویسندگان

  • Ali Ahmad
  • Muhammad Faisal Nadeem
  • Imran Javaid
  • Roslan Hasni
چکیده

A graph G is called edge-magic if there exists a bijective function φ : V (G)∪E(G) → {1, 2,. .. , |V (G)|+ |E(G)|} such that φ(x)+φ(xy)+φ(y) is a constant c(φ) for every edge xy ∈ E(G); here c(φ) is called the valence of φ. A graph G is said to be super edge-magic if φ(V (G)) = {1, 2,. .. , |V (G)|}. The super edge-magic deficiency, denoted by μ s (G), is the minimum nonnegative integer n such that G ∪ nK 1 has a super edge-magic labeling; if such an integer does not exist we define μ s (G) to be +∞. In this paper we study the super edge-magic deficiency of some families of graphs related to ladder graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Super Edge-Magic Deficiency of Graphs

A (p,q) graph G is called super edge-magic if there exists a bijective function f from V (G) ∪ E(G) to {1, 2,. .. , p + q} such that f (x) + f (xy) + f (y) is a constant k for every edge xy of G and f (V (G)) = {1, 2,. .. , p}. Furthermore, the super edge-magic deficiency of a graph G is either the minimum nonnegative integer n such that G ∪ nK 1 is super edge-magic or +∞ if there exists no suc...

متن کامل

Further Results on Complementary Super Edge Magic Graph Labeling

Abstract : In this paper we introduced the concept of complementary super edge magic labeling and Complementary Super Edge Magic strength of a graph G.A graph G (V, E ) is said to be complementary super edge magic if there exist a bijection f:V U E → { 1, 2, ............p+q } such that p+q+1 f(x) is constant. Such a labeling is called complementary super edge magic labeling with complementary s...

متن کامل

$Z_k$-Magic Labeling of Some Families of Graphs

For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic}  if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$  defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$  the group of integers modulo $k...

متن کامل

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) +  ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...

متن کامل

New problems related to the valences of ( super ) edge - magic labelings

A graph G of order p and size q is edge-magic if there is a bijective function f : V (G) ∪ E(G) −→ {i} i=1 such that f(x) + f(xy) + f(y) = k, for all xy ∈ E(G). The function f is an edge-magic labeling of G and the sum k is called either the magic sum, the valence or the weight of f . Furthermore, if f(V (G)) = {i}pi=1 then f is a super edge-magic labeling of G. In this paper we study the valen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2011